如何求解 $\dot{x} = x+f(t)$

\[ \begin{equation} \def\pr{\text{\rm pr}} \def\sec{\text{\rm sect}} \def\R{\mathbb{R}} \def\N{\mathbb{N}} \def\C{\mathbb{C}} \def\Z{\mathbb{Z}} \def\H{\mathcal{H}} \def\beq{\begin{equation}} \def\endeq{\end{equation}} \def\lesim{\lesssim} \def\mc{\mathcal} \def\h{\mathcal{H}} \newcommand{\bram}[1]{\begin{bmatrix}#1\end{bmatrix}} \def\mn{M^{(n)}} \def\lam{\lambda} \def\wide{\widehat} \def\uk{u^{(k_0)}} \def\uo{u^{(0)}} \def\pj{P^{(2)}} \def\pii{P^{(1)}} \def\pc{P^{Cone}} \def\tx{\tilde x} \DeclareMathOperator{\re}{Re} \DeclareMathOperator{\sgn}{sgn} \def\cplus{c\ci+} \def\cmin{c\ci-} \def\cplusmin{c\ci\pm} \def\chiplus{\chi\ci+} \def\chimin{\chi\ci-} \def\chiplusmin{\chi\ci\pm} \def\psiplus{\psi\ci+} \def\psimin{\psi\ci-} \def\psiplusmin{\psi\ci\pm} \def\sigmaplus{\sigma\ci+} \def\sigmamin{\sigma\ci-} \def\sigmaplusmin{\sigma\ci\pm} \def\bbone{\mathbbm 1} \newcommand{\dil}{\text{\rm Dil}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\ls}{\lesssim} \newcommand{\sL}{\mathscr L} \newcommand{\sJ}{\mathscr J} \newcommand{\sK}{\mathscr K} \newcommand{\wh}{\widehat} \newcommand{\wt}{\widetilde} \newcommand{\A}{\mathcal A} \newcommand{\E}{\mathcal E} \newcommand{\F}{\mathcal F} \newcommand{\D}{\mathcal D} \newcommand{\K}{\mathcal K} \newcommand{\QQ}{\mathcal Q} \newcommand{\RR}{\mathcal R} \newcommand{\f}[2]{\frac{#1}{#2}} \newcommand{\term}{c(z,r)F^\Psi_r(\cdot-z)} \newcommand{\norm}[1]{ \left| #1 \right| } \newcommand{\abs}[1]{ \left| #1 \right| } \newcommand{\Norm}[1]{ \left\| #1 \right\| } \newcommand{\iff}{\Leftrightarrow} \newcommand{\set}[1]{ \left\{ #1 \right\} } \newcommand{\Be}{\begin{equation}} \newcommand{\Ee}{\end{equation}} \newcommand{\Bm}{\begin{multline}} \newcommand{\Em}{\end{multline}} \newcommand{\Bea}{\begin{eqnarray}} \newcommand{\Eea}{\end{eqnarray}} \newcommand{\Beas}{\begin{eqnarray*}} \newcommand{\Eeas}{\end{eqnarray*}} \newcommand{\Benu}{\begin{enumerate}} \newcommand{\Eenu}{\end{enumerate}} \newcommand{\Bi}{\begin{itemize}} \newcommand{\Ei}{\end{itemize}} \def\conv{\text{Conv}} \def\tp{\tilde p} \def\tq{\tilde q} \def\crit{\text{\rm cr}} \def\sparse{\text{\rm sp}} \def\dyad{\text{\rm dyad}} \def\mart{\text{dyad}} \def\intslash{\rlap{\kern .32em $\mspace {.5mu}\backslash$ }\int} \def\qsl{\rlap{\kern .32em $\mspace {.5mu}\backslash$ }\int_{Q_x}} \def\Re{\operatorname{Re\,}} \def\Im{\operatorname{Im\,}} \def\mx \def\mn \def\vth{\vartheta} \def\rn{\rr^{n}} \def\rr{\mathbb R} \def\Q{\mathbb Q} \def\N{\mathbb N} \def\complex{\mathbb C} \def\emph#1{\it #1 } \def\diam{\text{\rm diam}} \def\osc{\text{\rm osc}} \def\ffB{\mathcal B} \def\seq{\subseteq} \def\Ga{\Gamma} \def\ga{\gamma} \def\Th{\Theta} \def\prd{\text{\it prod}} \def\parab{\text{\it parabolic}} \def\eg{\it e.g. } \def\cf{\it cf} \def\Rn{\mathbb R^n} \def\Rd{\mathbb R^d} \def\sgn{\text{\rm sign }} \def\rank{\text{\rm rank }} \def\corank{\text{\rm corank }} \def\coker{\text{\rm Coker }} \def\loc{\text{\rm loc}} \def\spec{\text{\rm spec}} \def\comp{\text{comp}} \def\Coi{C^\infty_0} \def\dist{\text{\it dist}} \def\diag{\text{\rm diag}} \def\supp{text{\rm supp}} \def\rad{\text{\it rad}} \def\sph{\text{sph}} \def\Lip{\text{\rm Lip}} \def\ev{\text{\rm ev}} \def\odd{\text{\rm odd}} \def\inn#1#2{\langle#1,#2\rangle} \def\biginn#1#2{\big\langle#1,#2\big\rangle} \def\rta{\rightarrow} \def\lta{\leftarrow} \def\noi{\noindent} \def\lcontr{\rfloor} \newcommand{\pmtx}[1]{\begin{pmatrix}#1\end{pmatrix}} \def\meas{\text{\rm meas}} \def\card{\text{\rm card}} \def\lc{\lesssim} \def\gc{\gtrsim} \def\pv{\text{\rm p.v.}} \def\a{\alpha} \def\alp{\alpha} \def\Alp{\Alpha} \def\bet{\beta} \def\gam{\gamma} \def\Gam{\Gamma} \def\del{\delta} \def\Del{\Delta} \def\eps{\varepsilon} \def\ep{\epsilon} \def\zet{\zeta} \def\tet{\theta} \def\Tet{\Theta} \def\iot{\iota} \def\kap{\kappa} \def\ka{\kappa} \def\lam{\lambda} \def\Lam{\Lambda} \def\la{\lambda} \def\La{\Lambda} \def\sig{\sigma} \def\Sig{\Sigma} \def\si{\sigma} \def\Si{\Sigma} \def\vphi{\varphi} \def\ome{\omega} \def\Ome{\Omega} \def\om{\omega} \def\fA{\mathfrak {A}} \def\fB{\mathfrak {B}} \def\fC{\mathfrak {C}} \def\fD{\mathfrak {D}} \def\fE{\mathfrak {E}} \def\fF{\mathfrak {F}} \def\fG{mathfrak {G}} \def\fH{\mathfrak {H}} \def\fI{\mathfrak {I}} \def\fJ{\mathfrak {J}} \def\fK{\mathfrak {K}} \def\fL{\mathfrak {L}} \def\fM{\mathfrak {M}} \def\fN{\mathfrak {N}} \def\fO{\mathfrak {O}} \def\fP{\mathfrak {P}} \def\fQ{\mathfrak {Q}} \def\fR{\mathfrak {R}} \def\fS{\mathfrak {S}} \def\fT{\mathfrak {T}} \def\fU{\mathfrak {U}} \def\fV{\mathfrak {V}} \def\fW{\mathfrak {W}} \def\fX{\mathfrak {X}} \def\fY{\mathfrak {Y}} \def\fZ{\mathfrak {Z}} \def\fa{\mathfrak {a}} \def\fb{\mathfrak {b}} \def\fc{\mathfrak {c}} \def\fd{\mathfrak {d}} \def\fe{\mathfrak {e}} \def\ff{\mathfrak {f}} \def\fg{\mathfrak {g}} \def\fh{\mathfrak {h}} \def\fj{\mathfrak {j}} \def\fk{\mathfrak {k}} \def\fl{\mathfrak {l}} \def\fn{\mathfrak {n}} \def\fo{\mathfrak {o}} \def\fq{\mathfrak {q}} \def\fr{\mathfrak {r}} \def\fs{\mathfrak {s}} \def\ft{\mathfrak {t}} \def\fu{\mathfrak {u}} \def\fv{\mathfrak {v}} \def\fw{\mathfrak {w}} \def\fx{\mathfrak {x}} \def\fy{\mathfrak {y}} \def\fz{\mathfrak {z}} \def\bbA{\mathbb {A}} \def\bbB{\mathbb {B}} \def\bbC{\mathbb {C}} \def\bbD{\mathbb {D}} \def\bbE{\mathbb {E}} \def\bbF{\mathbb {F}} \def\bbG{\mathbb {G}} \def\bbH{\mathbb {H}} \def\bbI{\mathbb {I}} \def\bbJ{\mathbb {J}} \def\bbK{\mathbb {K}} \def\bbL{\mathbb {L}} \def\bbM{\mathbb {M}} \def\bbN{\mathbb {N}} \def\bbO{\mathbb {O}} \def\bbP{\mathbb {P}} \def\bbQ{\mathbb {Q}} \def\bbR{\mathbb {R}} \def\bbS{\mathbb {S}} \def\bbT{\mathbb {T}} \def\bbU{\mathbb {U}} \def\bbV{\mathbb {V}} \def\bbW{\mathbb {W}} \def\bbX{\mathbb {X}} \def\bbY{\mathbb {Y}} \def\bbZ{\mathbb {Z}} \def\cA{\mathcal {A}} \def\cB{\mathcal {B}} \def\cC{\mathcal {C}} \def\cD{\mathcal {D}} \def\cE{\mathcal {E}} \def\cF{\mathcal {F}} \def\cG{\mathcal {G}} \def\cH{\mathcal {H}} \def\cI{\mathcal {I}} \def\cJ{\mathcal {J}} \def\cK{\mathcal {K}} \def\cL{\mathcal {L}} \def\cM{\mathcal {M}} \def\cN{\mathcal {N}} \def\cO{\mathcal {O}} \def\cP{\mathcal {P}} \def\cQ{\mathcal {Q}} \def\cR{\mathcal {R}} \def\cS{\mathcal {S}} \def\cT{\mathcal {T}} \def\cU{\mathcal {U}} \def\cV{\mathcal {V}} \def\cW{\mathcal {W}} \def\cX{\mathcal {X}} \def\cY{\mathcal {Y}} \def\cZ{\mathcal {Z}} \def\tA{\widetilde{A}} \def\tB{\widetilde{B}} \def\tC{\widetilde{C}} \def\tD{\widetilde{D}} \def\tE{\widetilde{E}} \def\tF{\widetilde{F}} \def\tG{\widetilde{G}} \def\tH{\widetilde{H}} \def\tI{\widetilde{I}} \def\tJ{\widetilde{J}} \def\tK{\widetilde{K}} \def\tL{\widetilde{L}} \def\tM{\widetilde{M}} \def\tN{\widetilde{N}} \def\tO{\widetilde{O}} \def\tP{\widetilde{P}} \def\tQ{\widetilde{Q}} \def\tR{\widetilde{R}} \def\tS{\widetilde{S}} \def\tT{\widetilde{T}} \def\tU{\widetilde{U}} \def\tV{\widetilde{V}} \def\tW{\widetilde{W}} \def\tX{\widetilde{X}} \def\tY{\widetilde{Y}} \def\tZ{\widetilde{Z}} \def\tcA{\widetilde{\mathcal {A}}} \def\tcB{\widetilde{\mathcal {B}}} \def\tcC{\widetilde{\mathcal {C}}} \def\tcD{\widetilde{\mathcal {D}}} \def\tcE{\widetilde{\mathcal {E}}} \def\tcF{\widetilde{\mathcal {F}}} \def\tcG{\widetilde{\mathcal {G}}} \def\tcH{\widetilde{\mathcal {H}}} \def\tcI{\widetilde{\mathcal {I}}} \def\tcJ{\widetilde{\mathcal {J}}} \def\tcK{\widetilde{\mathcal {K}}} \def\tcL{\widetilde{\mathcal {L}}} \def\tcM{\widetilde{\mathcal {M}}} \def\tcN{\widetilde{\mathcal {N}}} \def\tcO{\widetilde{\mathcal {O}}} \def\tcP{\widetilde{\mathcal {P}}} \def\tcQ{\widetilde{\mathcal {Q}}} \def\tcR{\widetilde{\mathcal {R}}} \def\tcS{\widetilde{\mathcal {S}}} \def\tcT{\widetilde{\mathcal {T}}} \def\tcU{\widetilde{\mathcal {U}}} \def\tcV{\widetilde{\mathcal {V}}} \def\tcW{\widetilde{\mathcal {W}}} \def\tcX{\widetilde{\mathcal {X}}} \def\tcY{\widetilde{\mathcal {Y}}} \def\tcZ{\widetilde{\mathcal {Z}}} \def\tfA{\widetilde{\mathfrak {A}}} \def\tfB{\widetilde{\mathfrak {B}}} \def\tfC{\widetilde{\mathfrak {C}}} \def\tfD{\widetilde{\mathfrak {D}}} \def\tfE{\widetilde{\mathfrak {E}}} \def\tfF{\widetilde{\mathfrak {F}}} \def\tfG{\widetilde{\mathfrak {G}}} \def\tfH{\widetilde{\mathfrak {H}}} \def\tfI{\widetilde{\mathfrak {I}}} \def\tfJ{\widetilde{\mathfrak {J}}} \def\tfK{\widetilde{\mathfrak {K}}} \def\tfL{\widetilde{\mathfrak {L}}} \def\tfM{\widetilde{\mathfrak {M}}} \def\tfN{\widetilde{\mathfrak {N}}} \def\tfO{\widetilde{\mathfrak {O}}} \def\tfP{\widetilde{\mathfrak {P}}} \def\tfQ{\widetilde{\mathfrak {Q}}} \def\tfR{\widetilde{\mathfrak {R}}} \def\tfS{\widetilde{\mathfrak {S}}} \def\tfT{\widetilde{\mathfrak {T}}} \def\tfU{\widetilde{\mathfrak {U}}} \def\tfV{\widetilde{\mathfrak {V}}} \def\tfW{\widetilde{\mathfrak {W}}} \def\tfX{\widetilde{\mathfrak {X}}} \def\tfY{\widetilde{\mathfrak {Y}}} \def\tfZ{\widetilde{\mathfrak {Z}}} \def\Atil{\widetilde A} \def\atil{\tilde a} \def\Btil{\widetilde B} \def\btil{\tilde b} \def\Ctil{\widetilde C} \def\ctil{\tilde c} \def\Dtil{\widetilde D} \def\dtil{\tilde d} \def\Etil{\widetilde E} \def\etil{\tilde e} \def\Ftil{\widetilde F} \def\ftil{\tilde f} \def\Gtil{\widetilde G} \def\gtil{\tilde g} \def\Htil{\widetilde H} \def\htil{\tilde h} \def\Itil{\widetilde I} \def\itil{\tilde i} \def\Jtil{\widetilde J} \def\jtil{\tilde j} \def\Ktil{\widetilde K} \def\ktil{\tilde k} \def\Ltil{\widetilde L} \def\ltil{\tilde l} \def\Mtil{\widetilde M} \def\mtil{\tilde m} \def\Ntil{\widetilde N} \def\ntil{\tilde n} \def\Otil{\widetilde O} \def\otil{\tilde o} \def\Ptil{\widetilde P} \def\ptil{\tilde p} \def\Qtil{\widetilde Q} \def\qtil{\tilde q} \def\Rtil{\widetilde R} \def\rtil{\tilde r} \def\Stil{\widetilde S} \def\stil{\tilde s} \def\Ttil{\widetilde T} \def\ttil{\tilde t} \def\Util{\widetilde U} \def\util{\tilde u} \def\Vtil{\widetilde V} \def\vtil{\tilde v} \def\Wtil{\widetilde W} \def\wtil{\tilde w} \def\Xtil{\widetilde X} \def\xtil{\tilde x} \def\Ytil{\widetilde Y} \def\ytil{\tilde y} \def\Ztil{\widetilde Z} \def\ztil{\tilde z} \def\ahat{\hat a} \def\Ahat{\widehat A} \def\bhat{\hat b} \def\Bhat{\widehat B} \def\chat{\hat c} \def\Chat{\widehat C} \def\dhat{\hat d} \def\Dhat{\widehat D} \def\ehat{\hat e} \def\Ehat{\widehat E} \def\fhat{\hat f} \def\Fhat{\widehat F} \def\ghat{\hat g} \def\Ghat{\widehat G} \def\hhat{\hat h} \def\Hhat{\widehat H} \def\ihat{\hat i} \def\Ihat{\widehat I} \def\jhat{\hat j} \def\Jhat{\widehat J} \def\khat{\hat k} \def\Khat{\widehat K} \def\lhat{\hat l} \def\Lhat{\widehat L} \def\mhat{\hat m} \def\Mhat{\widehat M} \def\nhat{\hat n} \def\Nhat{\widehat N} \def\ohat{\hat o} \def\Ohat{\widehat O} \def\phat{\hat p} \def\Phat{\widehat P} \def\qhat{\hat q} \def\Qhat{\widehat Q} \def\rhat{\hat r} \def\Rhat{\widehat R} \def\shat{\hat s} \def\Shat{\widehat S} \def\that{\hat t} \def\That{\widehat T} \def\uhat{\hat u} \def\Uhat{\widehat U} \def\vhat{\hat v} \def\Vhat{\widehat V} \def\what{\hat w} \def\What{\widehat W} \def\xhat{\hat x} \def\Xhat{\widehat X} \def\yhat{\hat y} \def\Yhat{\widehat Y} \def\zhat{\hat z} \def\Zhat{\widehat Z} \def\be#1{\begin{equation}\label{ #1}} \def\endeq{\end{equation}} \def\endal{\end{align}} \def\bas{\begin{align*}} \def\eas{\end{align*}} \def\bi{\begin{itemize}} \def\ei{\end{itemize}} \def\eps{\varepsilon} \def\textbf#1{\bf #1} \def\into{\hookrightarrow} \newcommand{\inf}{\infty} \newcommand{\os}[2]{\overset{#1}{#2}} \newcommand{\ms}{(X, \cM, \mu)} \newcommand{\salg}{\sig\text{-algebra}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\bij}{\mathrel{\hookrightarrow\hspace{-1.8ex}\to}} \newcommand{\onto}{\twoheadrightarrow} \newcommand{\id}{\text{id}} \newcommand{\Stab}{\text{Stab}} \def \bl {\backslash} \def \sfin {\sig\text{-finite}} \def \mum {\mu\text{-measurable}} \def \emps {\varnothing} \newcommand{\m}[1]{\boldsymbol{#1}} \newcommand{\bs}[1]{\boldsymbol{#1}} \newcommand{\Inf}{\text{inf}} \newcommand{\wb}[1]{\overline{#1}} \newcommand{\lto}{\longrightarrow} \newcommand{\todo}[1]{\bf\color{red}{[ToDo] \text{#1}}} \newcommand{\char}[1]{\cX_{#1}} \newcommand{\fp}{f^+} \newcommand{\fm}{f^-} \newcommand{\infm}{\text{inf}} \newcommand{\onorm}[1]{\Norm{#1}_1} \newcommand{\tnorm}[1]{\Norm{#1}_2} \newcommand{\infn}[1]{\Norm{#1}_\inf} \newcommand{\pnorm}[1]{\Norm{#1}_p} \newcommand{\End}{\text{End}} \newcommand{\Ob}{\text{Ob}} \newcommand{\Hom}{\text{Hom}} \newcommand{\intall}{\int_{-\inf}^{\inf}} \newcommand{\intpmpi}{\int_{-\pi}^{\pi}} \newcommand{\div}{\bigr|} \newcommand{\when}{\biggr|} \def \bsp {\begin{split}} \def \esp {\end{split}} \def \bc {\begin{cases}} \def \ec {\end{cases}} \newcommand{\sech}{\text{sech}} \newcommand{\vectk}{\text{Vect}_\text{k}} \newcommand{\top}{\text{Top}} \newcommand{\grp}{\text{Grp}} \newcommand{\pathx}{\text{Paths}_X} \newcommand{\from}{\leftarrow} \newcommand{\lfrom}{\longleftarrow} \newcommand{\tofrom}[2]{\os{\xrightarrow{#1}}{\xleftarrow[#2]{}}} \newcommand{\sym}{\text{Sym}} \newcommand{\Set}{\text{Set}} \newcommand{\zn}{\Z/n\Z} \newcommand{\Mor}{\text{Mor}} \newcommand{\acton}{\circlearrowright} \DeclareMathOperator{\tr}{Tr} \newcommand{\par}{\partial} \newcommand{\Fun}{\text{Fun}} \newcommand{\triv}{\text{triv}} \newcommand{\zmnz}[1]{\Z/{#1}\Z} \newcommand{\tl}{\triangleleft} \newcommand{\paren}[1]{\left({#1}\right)} \newcommand{\ceil}[1]{\lceil{#1}\rceil} \newcommand{\floor}[1]{\lfloor{#1}\rfloor} \end{equation} \]

最近在看Dayan和Abbott的Theoretical Neuroscience。虽然是数学系学生但是由于太浪,分析代数几何都学了个遍,感觉哪科都没学好,于是后遗症就是像傅里叶变换这种极为重要的东西竟然不是很熟。 于是我决定先把书后面的数学Appendix先光速过一遍,以免在读正文的时候尴尬卡壳。在附录讲微分方程的部分有一个方程: \[ \begin{equation} C\frac{dV}{dt} = \frac{E-V}{R} + I_e \end{equation} \] 这是比较容易求解的,令\(W = -V+E+RI_e\), 我们有 \[ \begin{equation} RC(-W)' = W \end{equation} \] 愉快地分离变量就能得到\(W = C'\exp(-t/\tau)\). 把\(V(0)\) 这个初始条件代进去就有\(C' = W(0) = -V(0)+E+RI_e\)。 我们就能得到书上列出的解 \[ \begin{equation} V(t) = V_\inf +(V(0)- V_\inf) \exp(-t/\tau) \end{equation} \]

其中\(V_\inf = E+RI_e\), \(\tau = RC\)。接下来作者又假设了另外一种情况, 这种情况下\(I_e\) 随时间振荡: \(I_e = I\cos(\omega t)\). 这下就有点难办,不过没关系,把我们的意大利炮拉上来: 对于方程 \(\dot{x} = a(t)x+b(t)\), 我们有解 \[ \begin{equation} x(t) = \exp\paren{\int_0^t a(s)ds)}x(0)+\int_0^t \exp\paren{\int_s^ta(r)dr}b(s)ds \end{equation}\label{eq:1}\tag{1} \] 这个方程是这样解的, 两边同乘\(\mu(t) = \exp(-\int_0^t a(s) ds)\) (别问我为啥是这个,问就是exponential的derivative可以把指数拿下来然后用链式法则,就硬凑)。这样方程就变成了 \[ \begin{equation} \bsp \mu(t)\dot{x} - \mu(t)a(t)x&= b(t)\mu(t)\\ \paren{\mu(t)x}' &= b(t)\mu(t)\\ \mu(t)x &=\int_0^t b(r)\mu(r)dr+C\\ \esp \end{equation} \]

\(t = 0\)带进去, 发现\(C = x(0)\), 把\(\mu(t)\) 移到另一边,我们就得到了之前那个解\(\eqref{eq:1}\)。直接把答案代到方程里面验算当然也可以证明,但那就是明目张胆的作弊了。而且应该会用到Leibniz integral rule。接下来我们,开炮!我们把\(V\)当成\(x\), \(a(t) = -1/\tau\), \(b(t) = E/\tau+I\cos(\om t)/C\), 所以解就是 \[ \begin{equation} V(t) = e^{-t/\tau}V(0)+\int_0^t e^{-(t-s)/\tau}b(s)ds \end{equation} \]

可能大家读到这里都忘了我们是在解一本书里面的方程,书上是这么说的, "once an initial transient has decayed to zero, we find" \[ \begin{equation} V(t) = E+\f{RI\cos(wt- \phi)}{ \sqrt{1+\om^2 \tau^2} } \end{equation} \] 其中\(\tan(\phi) = \om\tau\)。啊这。。。我刚开始看的时候是懵逼的,啥是transient? 后来才知道可能这是电子工程里面的术语。 Transient的意思不是短暂的么,这里就是指在\(t\to \inf\)时趋于0的项, 可以想象成时间长了后散逸掉的能量。我们相当于要求下面这个东西 \[ \lim_{t\to\inf} \int_0^t e^{-(t-s)/\tau}b(s)ds \] 这里的极限不是分析意义上的,只是表示去掉\(t\to \inf\)时为0的项。东凑凑西算算, 最后发现还是把余弦化成复数形式会比较好: \[ \begin{equation} \cos(\omega t) = \frac{\exp(iwt)+\exp(-iwt)}{2} \end{equation} \]

目的当然是好积分, 并不清楚作者是如何算的 \[ \bsp \int_0^te^{-(t-s)/\tau}(E/\tau+I\cos(\om s)/C)ds &= A(t)+B(t)+C(t)\\ A(t)&=\f{E}{\tau}\int_0^t e^{-(t-s)/\tau}ds\\ B(t)&= \f{I}{2C}\int_0^t\exp(iws-(t-s)/\tau)ds\\ C(t)&= \f{I}{2C}\int_0^t\exp(-iws-(t-s)/\tau)ds \esp \] 简单的积分: \[ \bsp A(t) &= E(1-e^{-t/\tau})\\ B(t) &= \f{I\tau}{2C(iw\tau +1)}(\exp(iwt) - \exp(-t/\tau))\\ C(t) &= \f{I\tau}{2C(-iw\tau +1)}(\exp(-iwt) - \exp(-t/\tau))\\ \esp \] 求个“极限” \[ \bsp \lim_{t\to\inf} A(t) &= E\\ \lim_{t\to\inf} B(t) &=\f{I\tau}{2C(iw\tau +1)}\exp(iwt)\\ \lim_{t\to \inf}C(t) &= \f{I\tau}{2C(-iw\tau +1)}\exp(-iwt)\\ \esp \] 别忘了\(\tau = RC\), 于是我们有 \[ V(t) = E+\f{RI\left[\exp(iwt)(-iw\tau+1)+\exp(-iwt)(iw\tau+1)\right]}{2( 1+\om^2 \tau^2)} \] 把指数再展开成三角函数 \[ V(t) = E+\f{RI(\cos(w\tau)+w\tau \sin(w\tau) )}{1+w^2\tau^2} \] 诶和书上的答案不一样,gg。小丑竟是我自己。其实是这样,观察分子和 \[ \cos(\alp-\bet) = \cos(\alp)\cos(\bet)+\sin(\alp)\sin(\bet) \] 的相似性, 我们希望 \[ \bsp \cos(\phi) = 1\\ \sin(\phi) = w\tau \esp \] 这不可能,平方和要是1,于是上下同除\(1/\sqrt{1+w^2\tau^2}\)即可。 \[ \bsp \cos(\phi) = 1/\sqrt{1+w^2\tau^2}\\ \sin(\phi) = w\tau/\sqrt{1+w^2\tau^2} \esp \] \(\tan(\phi) = w\tau\)自然成立。到此我们终于得到了这个书上没有过程的结论。。。

后记:打这篇文章主要是想体验一下在博客里面写有大量公式的文章的体验。 有macro确实爽。不过打latex得不断切换中英输入法很麻烦,下次用英语写得了。